Numerical Methods

Finding Roots

Finding roots / solving equations

General solution exists for equations such as

$$ax^2 + bx + c = 0$$

The quadratic formula provides a quick answer to *all* quadratic equations.

However, *no* exact *general solution* (*formula*) exists for equations with powers greater than 4.

Methods For Solving Nonlinear Equations Are Iterative

- generate a sequence of points $x^{(k)}$, k = 0, 1, 2, ... that converge to a solution; $x^{(k)}$ is called the kth iterate; $x^{(0)}$ is the $starting\ point$
- ullet computing $x^{(k+1)}$ from $x^{(k)}$ is called one iteration of the algorithm
- ullet each iteration typically requires one evaluation of f (or f and f') at $x^{(k)}$
- algorithms need a stopping criterion, e.g., terminate if

$$|f(x^{(k)})| \le \text{specified tolerance}$$

- speed of the algorithm depends on:
 - the cost of evaluating f(x) (and possibly, f'(x))
 - the number of iterations

Roots of Nonlinear Equations Stop-criteria

Unrealistic stop-criteria

$$x_{k+1} \neq x_k$$

Realistic stop-criteria

Use combination of the two criteria

Typical stopping criteria:

- x-increment $|x_{k+1} x_k| \le \tau_x$
- f-value $f(x_k) \le \tau_f$
- number of iterations $k \ge k_{\text{max}}$

Root Finding: f(x)=0

Method 1: The Bisection method

Theorem: If f(x) is continuous in [a,b] and if f(a)f(b)<0, then there is at least one root of f(x)=0 in (a,b).

Single root in (a,b)

Multiple roots in (a,b)

FIGURE 3.1 Bisection applied to $y = 2 - e^x$.

Bisection method

The idea for the Bisection Algorithm is to cut the interval [a,b] you are given in half (bisect it) on each iteration by computing the midpoint x_{mid} . The midpoint will replace either a or b depending on if the sign of $f(x_{mid})$ agrees with f(a) or f(b).

Step 1: Compute
$$x_{mid} = (a+b)/2$$

Step 2: If $sign(f(x_{mid})) = 0$ then end algorithm

else If
$$sign(f(x_{mid})) = sign(f(a))$$
 then $a = x_{mid}$
else $b = x_{mid}$

Step 3: Return to step 1

This shows how the points a, b and x_{mid} are related.

Bisection method

- Find an interval $[x_0, x_1]$ so that $f(x_0)f(x_1) < 0$ (This may not be easy.).
- Cut the interval length into half with each iteration, by examining the sign of the function at the mid point.

$$x_2 = \frac{x_0 + x_1}{2}$$

- If $f(x_2) = 0$, x_2 is the root.
- If $f(x_2) \neq 0$ and $f(x_0)f(x_2) < 0$, root lies in $[x_0,x_2]$.
- Otherwise root lies in $[x_2,x_1]$.
- Repeat the process until the interval shrinks to a desired level.

Pseudo code (Bisection Method)

1. Input $\epsilon > 0$, m > 0, $x_1 > x_0$ so that $f(x_0) f(x_1) < 0$.

Compute $f_0 = f(x_0)$.

k = 1 (iteration count)

2. Do

{
(a) Compute
$$f_2 = f(x_2) = f\left(\frac{x_0 + x_1}{2}\right)$$

- (b) If $f_2f_0 < 0$, set $x_1 = x_2$ otherwise set $x_0 = x_2$ and $x_0 = x_2$.
- (c) Set k = k+1.

}

- 3. While $|f_2| > \in$ and $k \le m$
- 4. set $x = x_2$, the root.

Consider finding the root of $f(x) = x^2 - 3$. Let $\varepsilon = 0.01$, $\varepsilon = 0.01$ and start with the interval [1, 2].

Bisection method applied to $f(x) = x^2 - 3$.

Α	b	f(a)	f(b)	c = (a + b)/2	f(f)	Update	b - a
1	2	-2	1	1.5	-0.75	a = c	0.5
1.5	2	-0.75	1	1.75	0.062	b = c	0.25
1.5	1.75	-0.75	0.0625	1.625	-0.359	a = c	0.125
1.625	1.75	-0.3594	0.0625	1.6875	-0.1523	a = c	0.0625
1.6875	1.75	-0.1523	0.0625	1.7188	-0.0457	a = c	0.0313
1.7188	1.75	-0.0457	0.0625	1.7344	0.0081	b = c	0.0156
1.71988/td>	1.7344	-0.0457	0.0081	1.7266	-0.0189	a = c	0.0078

Bisection Method: Example

xo	x1	f(xo)	f(x1)	x2	f(x2)
0	4	-7	1	2	1
0	2	-7	1	1	1
0	1	-7	1	0.5	-1.625
0.5	1	-1.625	1	0.75	-0.015625
0.75	1	-0.015625	1	0.875	0.560547
0.75	0.875	-0.015625	0.560547	0.8125	0.290283
0.75	0.8125	-0.015625	0.290283	0.78125	0.141876
0.75	0.78125	-0.015625	0.141876	0.765625	0.064274

$$f(x) = (x-1)(x-2)(x-4)+1$$

```
Bisection applied to f(x) = \exp(x) - 3x^2:
tol= 1.00e-002
```

Iteration	Inter	val
0	[0.500	1.000]
1	[0.750	1.000]
2	[0.875	1.000]
3	[0.875	0.938]
4	[0.906	0.938]
5	[0.906	0.922]
6	[0.906	0.914]

xsol= 9.1016e-001f(xsol)= -4.4246e-004

Number of Iterations and Error Tolerance

• Length of the interval (where the root lies) after n iterations

$$e_n = \frac{x_1 - x_0}{2^{n+1}}$$

• We can fix the number of iterations so that the root lies within an interval of chosen length ∈ (error tolerance).

$$\mathbf{e}_{\mathbf{n}} \leq \in \Rightarrow n \geq \left(\frac{\ln(x_1 - x_0) - \ln \epsilon}{\ln 2}\right) - 1$$

• Use the theorem from the course to find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-3} to the solution of $x^3 - x - 1 = 0$ lying in the interval [1, 4].

$$\frac{b-a}{2^n} = \frac{3}{2^n} \le 10^{-3}$$
,

$$3 \cdot 10^3 \le 2^n \Rightarrow n \ge \frac{\log_{10}(3 \cdot 10^3)}{\log_{10}(2)} \approx 11.55$$

For example, if we were solving $g(x) = x^2 - 3 = 0$ starting in the interval [1, 2], with a tolerance of 10^{-3} , the number of iterations needed would be the largest integer satisfying

$$i \geq \frac{\log\left(\frac{2-1}{10^{-3}}\right)}{\log\left(2\right)}$$

$$= \frac{\log\left(10^{3}\right)}{\log\left(2\right)}$$

$$= \frac{3}{\log\left(2\right)}$$

$$= 9.9658$$

Thus, 10 iterations would be needed.

Find a bound for the number of Bisection method iterations needed to achieve an approximation with accuracy 10^{-9} to the solution of $x^5+x=1$ lying in the interval [0,1]. Find an approximation to the root with this degree of accuracy.

Convergence criteria

We would like $f(p_n) \approx 0$ and $p_n \approx p_{n-1}$ The criteria can be

- ▶ For the ordinate: $|f(p_n)| < \epsilon$
- For the abscissa:
 - for the absolute error: $|p_n p_{n-1}| < \delta$
 - for the relative error: $\frac{2|p_n-p_{n-1}|}{|p_n|+|p_{n-1}|}<\delta$

May also use
$$N = \operatorname{ceil} \frac{\ln(b-a) - \ln(\delta)}{\ln(2)}$$

Advantages

- Always convergent
- The root bracket gets halved with each iteration -it is guaranteed to converge under its assumptions,

Drawbacks

Slow convergence

Drawbacks (continued)

If one of the initial guesses is close to the root, the convergence is slower

Drawbacks (continued)

• If a function f(x) is such that it just touches the x-axis it will be unable to find the lower and upper guesses.

Drawbacks (continued)

Function changes sign but root does not exist

Improvement to Bisection

- Regula Falsi, or Method of False Position.
- Use the shape of the curve as a cue
- Use a straight line between y values to select interior point
- As curve segments become small, this closely approximates the root

False Position Method (Regula Falsi)

Instead of bisecting the interval $[x_0,x_1]$, we choose the point where the straight line through the end points meet the x-axis as x_2 and bracket the root with $[x_0,x_2]$ or $[x_2,x_1]$ depending on the sign of $f(x_2)$.

False Position Method

Straight line through (x_0,f_0) , (x_1,f_1) : $y = f_1 + \frac{f_1 - f_0}{x_1 - x_0}(x - x_1)$

New end point
$$x_2$$
: $x_2 = x_1 - \left(\frac{x_1 - x_0}{f_1 - f_0}\right) f_1$

False Position Method (Pseudo Code)

```
1. Choose \in > 0 (tolerance on |f(x)|)
              m > 0 (maximum number of iterations)
              k = 1 (iteration count)
             x_0, x_1 (so that f_0, f_1 < 0)
     a. Compute  x_2 = x_1 - \left(\frac{x_1 - x_0}{f_1 - f_0}\right) f_1 
 f_2 = f(x_2) 
2. {
     b. If f_0 f_2 < 0 set x_1 = x_2, f_0 = f_2
     c. k = k+1
3. While (|f_2| \ge \epsilon) and (k \le m)
```

4. $x = x_2$, the root.

: bisection method

Solve the equation

 $\sin x = 0$

using the initial interval a = 2 and b = 4.

n	a_n	b_n	c_n	$ f(c_n) $
О	2.000000	1.000000	3.000000	1.411200e-01
1	3.000000	4.000000	3.500000	3.507832e-01
2	3.000000	3.500000	3.250000	1.081951e-01
3	3.000000	3.250000	3.125000	1.659189e-02
4	3.125000	3.250000	3.187500	4.589122e-02
5	3.125000	3.187500	3.156250	1.465682e-02
6	3.125000	3.156250	3.140625	9.676534e-04
7	3.140625	3.156250	3.148438	6.844793€-03
8	3.140625	3.148438	3.144531	2.938592e-03
9	3.140625	3.144531	3.142578	9.854713e-04
10	3.140625	3.142578	3.141602	8.908910e-06
11	3.140625	3.141602	3.141113	4.793723e-04
12	3.141113	3.141602	3.141357	2.352317e-04
13	3.141357	3.141602	3.141479	1.131614e-04
14	3.141479	3.141602	3.141541	5.212625e-05
15	3.141541	3.141602	3.141571	2.160867e-05
16	3.141571	3.141602	3.141586	6.349879e-06
17	3.141586	3.141602	3.141594	1.279516e-06
18	3.141586	3.141594	3.141590	2.535182e-06
19	3.141590	3.141594	3.141592	6.278330e-07
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0 2.000000 1 3.000000 2 3.000000 3 3.000000 4 3.125000 5 3.125000 6 3.125000 7 3.140625 8 3.140625 9 3.140625 10 3.140625 11 3.140625 12 3.141113 13 3.141357 14 3.141541 16 3.141571 17 3.141586 18 3.141586	0 2.000000 4.000000 1 3.000000 4.000000 2 3.000000 3.500000 3 3.000000 3.250000 4 3.125000 3.187500 5 3.125000 3.187500 6 3.125000 3.156250 7 3.140625 3.148438 9 3.140625 3.144531 10 3.140625 3.142578 11 3.140625 3.141602 12 3.141113 3.141602 13 3.141357 3.141602 14 3.141541 3.141602 15 3.141541 3.141602 16 3.141586 3.141602 17 3.141586 3.141594 18 3.141586 3.141594	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Experimentally, 18 iterations are required to compute π with 6 significant digits.

False Position Method

Solve the equation

 $\sin x = 0$

using the initial interval a = 2 and b = 4.

п	a_n	b_n	c_n	$ f(c_n) $
0	2.000000	4.000000	3.091528	5.004366e-02
1	3.091528	4.000000	3.147875	6.282262e-03
2	3.091528	3.147875	3.141590	2.295634e-06
3	3.141590	3.147875	3.141593	1.509491e-11
4	3.141590	3.141593	3.141593	1.224647e-16
5	3.141593	3.141593	3.141593	1.224647e-16

Experimentally, 3 iterations are required to compute π with 6 significant digits.

The Secant Method

(Geometrical Construction)

- Two initial points x_0 , x_1 are chosen
- The next approximation x_2 is the point where the straight line joining (x_0,f_0) and (x_1,f_1) meet the x-axis
- Take (x_1,x_2) and repeat.

The secant Method (Pseudo Code)

```
Choose \in > 0 (function tolerance |f(x)| \le \in)
             m > 0 (Maximum number of iterations)
             x_0, x_1 (Two initial points near the root)
             f_0 = f(x_0)
             f_1 = f(x_1)
             k = 1 (iteration count)
2. Do \{ x_2 = x_1 - \left( \frac{x_1 - x_0}{f_1 - f_0} \right) f_1 \}
                 x_0 = x_1
                f_0 = f_1
                 X_1 = X_2
                 f_1 = f(x_2)
                 k = k+1
```

3. While $(|f_1| \ge \epsilon)$ and $(m \le k)$

- Example
- As an example of the secant method, suppose we wish to find a root of the function
- $f(x) = cos(x) + 2 sin(x) + x^2$.
- A closed form solution for x does not exist so we must use a numerical technique. We will use x0 = 0 and x1 = -0.1 as our initial approximations. We will let the two values estep = 0.001 and eabs = 0.001 and we will halt after a maximum of N = 100 iterations.
- We will use four decimal digit arithmetic to find a solution and the resulting iteration is shown in Table 1.

n	X _{n-1}	X _n	X_{n+1}	$ f(x_{n+1}) $	$ x_{n+1}-x_n $
1	0.0	-0.1	-0.5136	0.1522	0.4136
2	-0.1	-0.5136	-0.6100	0.0457	0.0964
3	-0.5136	-0.6100	-0.6514	0.0065	0.0414
4	-0.6100	-0.6514	-0.6582	0.0013	0.0068
5	-0.6514	-0.6582	-0.6598	0.0006	0.0016
6	-0.6582	-0.6598	-0.6595	0.0002	0.0003

Newton-Raphson Method /

Newton's Method

At an approximate x_k to the root ,the curve is approximated by the tangent to the curve at x_k and the next approximation x_{k+1} is the point where the tangent meets the x-axis.

Tangent at (x_k, f_k) :

$$y = f(x_k) + f'(x_k)(x-x_k)$$

This tangent cuts the x-axis at x_{k+1}

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

<u>Warning</u>: If $f'(x_k)$ is very small, method fails.

• Two function Evaluations per iteration

Newton's Method - Pseudo code

```
1. Choose \in > 0 (function tolerance |f(x)| < \in)
             m > 0 (Maximum number of iterations)
             x_0 - initial approximation
              k - iteration count
     Compute f(x_0)
2. Do { q = f'(x_0) (evaluate derivative at x_0)
            x_1 = x_0 - f_0/q
            x_0 = x_1
            f_0 = f(x_0)
            k = k+1
3. While (|f_0| \ge \epsilon) and (k \le m)
4. x = x_1 the root.
```

Newton's Method for finding the square root of a number $x = \sqrt{a}$

$$f(x) = x^2 - a^2 = 0$$

$$x_{k+1} = x_k - \frac{x_k^2 - a^2}{2x_k}$$

Example : a = 5, initial approximation $x_0 = 2$.

$$x_1 = 2.25$$

$$x_2 = 2.2361111111$$

$$x_3 = 2.236067978$$

$$x_4 = 2.236067978$$

As an example of Newton's method, suppose we wish to find a root of the function $f(x) = cos(x) + 2 sin(x) + x^2$.

A closed form solution for x does not exist so we must use a numerical technique. We will use x0 = 0 as our initial approximation. We will let the two values $ext{step} = 0.001$ and $ext{sabs} = 0.001$ and we will halt after a maximum of N = 100 iterations.

From calculus, we know that the derivative of the given function is

$$f'(x) = -\sin(x) + 2\cos(x) + 2x$$
.

We will use four decimal digit arithmetic to find a solution and the resulting iteration is shown in

Table 2.

Table 2. Newton's method applied to $f(x) = cos(x) + 2 sin(x) + x^2$.

n	X _n	X_{n+1}	$ f(x_{n+1}) $	$ x_{n+1}-x_n $
0	0.0	-0.5000	0.1688	0.5000
1	-0.5000	-0.6368	0.0205	0.1368
2	-0.6368	-0.6589	0.0080000	0.02210
3	-0.6589	-0.6598	0.0006	0.0009

Thus, with the last step, both halting conditions are met, and therefore, after four iterations, our approximation to the root is -0.6598.

General remarks on Convergence

- # The false position method in general converges faster than the bisection method. (But not always).
- # The bisection method and the false position method are guaranteed for convergence.
- # The secant method and the Newton-Raphson method are not guaranteed for convergence.

Comparison of Methods

Method	Initial guesses	Convergence rate	Stability	
Bisection	2	Slow	Always	
False position	2	Medium	Always	
Fixed-pointed iteration	1	Slow	Possibly divergent	
Newton-Raphson	1	Fast	Possibly divergent	Evaluate f'(x)
Modified Newton- Raphson	1	Fast: multiple roots Medium:single root	Possibly divergent	F''(x) and f'(x)
Secant	2	Medium to fast	Possibly divergent	Initial guesses don't have to bracket root
Modified secant	2	Fast	Possibly divergent	